CETIFICATION

SDG No:

JC23443

Laboratory:

Accutest, New Jersey

Site:

BMS-ICM, Humacao, PR

Matrix:

Groundwater

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – BMS-ICM, Humacao, PR. The BMSMC facility is located in Humacao, PR. Samples were taken June 30-July 05, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for 1,4-Dioxane and Naphthalene. The results were reported under SDG No.: JC23443. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC23443-1	OSGP4-GWD	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC23443-2	OSGP4-GWS	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC23443-3	OSGP5-GWD	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC23443-4	OSGP5-GWS	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC23443-4	OSGP5-GWS	Groundwater	1,-4-dioxane (Scan)
JC23443-5	OSGP6-GWD	Groundwater	1,-4-dioxane and Naphthalene (SIM)
JC23443-5	OSGP6-GWD	Groundwater	1,-4-dioxane (Scan)

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 24 2016

Report of Analysis

Page 1 of 1

Client Sample ID: OSGP4-GWD Lab Sample ID: JC23443-1

AQ - Ground Water

Date Sampled: 06/30/16 07/06/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Date Received: Percent Solids: n/a

Q

Project:

BMS-ICM, Humacao, PR

Prep Batch **Analytical Batch**

File ID DF Analyzed Ву Run #1 3M62854.D 07/08/16 1

Run #2

Prep Date LK 07/06/16 OP95323A

E3M2968

Initial Volume Final Volume Run #1 890 ml 1.0 ml

Run #2

CAS No. Compound Result RLMDL Units 91-20-3 Naphthalene ND 0.11 0.033 ug/l 123-91-1 1.4-Dioxane ND 0.11 0.055 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 69% 24-125% 321-60-8 2-Fluorobiphenyl 69% 19-127% 1718-51-0 Terphenyl-d14 79% 10-119%

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: OSGP4-GWS Lab Sample ID: JC23443-2 Matrix:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled: 06/30/16 Date Received: 07/06/16

Percent Solids: n/a

Project: BMS-ICM, Humacao, PR

File ID DF Ву **Analytical Batch** Analyzed Prep Date Prep Batch Run #1 3M62855.D 07/08/16 LK 07/06/16 OP95323A E3M2968 1

Run #2

Method:

Initial Volume Final Volume Run #1 900 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q 91-20-3 Naphthalene ND 0.11 0.033ug/l 123-91-1 1,4-Dioxane ND 0.11 0.054 ug/l CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 24-125% 68% 321-60-8 2-Fluorobiphenyl 71% 19-127% 1718-51-0 Terphenyl-d14 79% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

	**
Client Sample ID:	OSGP5-GWD
Lab Sample ID:	JC23443-3

Matrix:

AQ - Ground Water

Date Sampled: 07/01/16 Date Received: 07/06/16

Method: Project:

SW846 8270D BY SIM SW846 3510C BMS-ICM, Humacao, PR

Percent Solids: n/a

Q

File ID DF By Prep Date Prep Batch **Analytical Batch** Analyzed Run #1 3M62856.D 07/08/16 LK 07/06/16 OP95323A E3M2968 1

Run #2

Initial Volume Final Volume Run #1 910 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 1.69	0.11 0.11	0.032 0.054	ug/l ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0 321-60-8 1718-51-0	60-8 2-Fluorobiphenyl			19-1	25% 27%
		75%			19%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP5-GWS
Lab Sample ID:	JC23443-4

Matrix: AQ - Ground Water

Initial Volume

940 ml

940 ml

Method: SW846 8270D BY SIM SW846 3510C Date Sampled: 07/05/16 Date Received: 07/06/16

Percent Solids: n/a

Q

Project:

Run #1

Run #2

BMS-ICM, Humacao, PR

Final Volume

1.0 ml

1.0 ml

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3M62857.D	1	07/08/16	LK	07/06/16	OP95323A	E3M2968
Run #2	Z112258A.D	1	07/10/16	AC	07/06/16	OP95323A	EZ5607

CAS No.	Compound	Result	RL	MDL	Units
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 33.3 ^a	0.11 1.1	0.031 0.052	ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	66% 64% 75%	78% 65% 66%	19-1	25% 27% 19%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP6-GWD
Lab Sample ID:	JC23443-5

Initial Volume

910 ml

Matrix: Method:

AQ - Ground Water SW846 8270D BY SIM SW846 3510C Date Sampled: Date Received:

07/05/16 07/06/16

Percent Solids: n/a

Q

Project:

Run #1

BMS-ICM, Humacao, PR

Final Volume

1.0 ml

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4M66661.D	1	07/07/16	IJ	07/06/16	OP95328A	E4M2998
Run #2	P105954.D	1	07/08/16	BP	07/06/16	OP95328A	EP4679

Run #2	910 ml 1.0 r	nl			
CAS No.	Compound	Result	RL	MDL	Unit
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 5,81 ^a	0.11 1.1	0.032 0.054	ug/l ug/l
CAS No.	Surrogate Recoverie	s Run#1	Run# 2	Lim	its
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	61% 45% 67%	95% 89% 80%	19-1	25% 27% 19%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

	NJ	لهو		•	CHAII	Review 130	, Depum,	NI 0881						8	098 8 98	6288 6288	2994 2994	4	Aprille Con	m Carrie		230	F <u>/</u>
- TO SEC.		HEAT SHOULD		SENSE DAME	Project I	ward b	-		27.6	200	100		350.7	5 3	Rent	ested An	ahraia i	age II	EST CE				Marry Code
	Client / Reporting Informatio	Book 195	Propert Pages.		Project	THE OF THE	JUNI	A STATE OF THE PARTY OF THE PAR	10000	-	Sen Po	-	-	-			1			1			2.0
	ny Name Ison Muthodiand & Associates Idonal		DANSMC Plus	a 2A Raisses A	mount	50005				580	cien			716 00									DW - Daving We OW - Ground We WW - Weser SW - Surface We
	Nestchester Avenue, Suite 417	Za	T-m		Sme	20000	-	(ran	rent br	un his	ent top	_	_	87760									SCI - See SL- Davige
367		10577	Humacilo		PR								3	7		1	1	1	- 31	- 1			SED-BORRAN
unchi	Cartac	E-mail	Promot #		-	50001 Ad								1 8		- 1							LXQ - Other Liqui AR - Ar
Terr	ny Taylor	Fac il	626 Clara Putchase (1000	Cay	-	_	-	inde .	_	Ze		Naphthalane	ш	1			l I		-		SOL - Other Sol WP - Wipe
Thomas 6	LZS1-0400					356.		<u> </u>				- 31		3				П	H				FB-Field Dank EB-Equipment III
Lample	hild? speciality	Phone II	Privace Manager	922	100	^terior							- 3	1	lΙ		1	1	ш				RB-Rinne Blen TB-Trop Blank
M.R	Rivers, R. Stuert, R. O'Rolly, T.	Taylor	Terry Taylor		Calvathe	_					-		_	1 6						- 1			1
==:	Field ID / Point of Collection		MECHADI VAN R		Time		_		<u>₽</u> }	8	200	20 Week	ENECOME	1,4-Dioxane									LAB USE ON
1	OSGRA - GWD			6/30/14	1518	TT	GW	2	П		2			X									
2	OSGP4-GWS			6/80/14	1715	TT	GW	2	П	П	72	\top	П	X			J.						676
2	OSGPS-GWD	- 22	*	7/ //6	13:45	TT	GW	2	П	П	12		П	X				T					
Ý	08GP 5-6 W 5			7/5/16	1100	17	GW		П	77	12		П	X		7-3							
<	OSGPG-GWD			7/5/16	1340	75	GW	1	П	П	72		П	X									
1	-060P" (DV		154, No. 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			GW		П	\blacksquare	72	F	F	T	Δs	0			- 1				
	-								П	П	\sqcap	T	П				Т						
3.3							-00		П	П	\top		П	1			T						
									П	11	П	\top	\sqcap										
-									H	\forall	\neg	\top	††	1	1		1				1		
-0									\sqcap	77	7	\top	11	1	T		1						
2512		1200	E435		3000	2.23	FR.		Ħ	3 2	2 7	2 2	8 8	Sir	i de	961 S	6 74	2 300	50%	223	333	社務	200
100	Turneround Time (Business de	rai .		1967		7 5	-	Den	Date	erabile.	de se	item	1 1	1.87	53	1.400	CON.	Com	month /	Вресии	Instructi	en 295	PER MINERAL TRANSPORT
	Ste. 15 Synthesia Steps Step. 16 Shadhean Doys (by Contro		Approved by these	02/2	./		Commerc Commerc						P Care			NT	m	a	Va	lin	5v	0	
	THE DOLY MUSH	INITIAL	ASESSME	מן סלל זע	V		PULLTI (Lavet 3+		•		State	Form		- 8				-	R√	76	IIL.	
	E Day RUEN			<u> </u>	-	맘	ILJ fledet				-	200 000	Persion	_	-7	_		_		-	1-1		
	2 Day EMERGENCY	LABEL	VERIFICATI	UN U	-	ال		Common			ale Chap		7.										
	1 Day EMERCENCY			5 - C. S.				Correction HJ Redu						e Raw o									
a/da		(FIRE		agis Cassady III			-			a char						dollwary.	_		WART.	(18)	18136		
. 7	Trustal State	7/5	16 1200	1	dE>	<			2	الصلافي	10	7	X			7	Wis	9:30	7	٤	76		
· //	special by Security;	- 7-							-		lys.	-7					-			4 Byr			
3	and the state of t	Date Time;		3					1		198		R	. Here					14		\$T	Cod	32 ERP

JC23443: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC23443

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

5

Location:

BMS-ICM, Humacao, PR

Humacao, PR

SUMMARY: Five (5) samples were analyzed for the ABN TCL list following method SW846-8270D using the selective ion monitoring (SIM) technique. Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D- scanning mode in samples JC23443-4 and JC23443-5. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015—Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

Major:

None None

Minor:

None

Critical findings: Major findings:

None None

Minor findings:

1. Initial and continuing calibration verifications meet the method and guidance document

required performance criteria. No closing calibration verification included in data package.

No action taken, professional judgment.

QC samples from other jobs were not validated.

2. MS/MSD % recoveries and RPD within laboratory control limits.

No MS/MSD data included in the data package for the sample batch analyzed in the

scanning mode. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 24, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC23443-1

Sample location: BMS-ICM, Humacao, PR

Sampling date: 6/30/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

 Naphthalene
 0.11
 ug/l
 1
 U
 Yes

 1,4-Dioxane
 0.11
 ug/l
 1
 U
 Yes

Sample ID: JC23443-2

Sample location: BMS-ICM, Humacao, PR

Sampling date: 6/30/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

 Naphthalene
 0.11
 ug/l
 1
 U
 Yes

 1,4-Dioxane
 0.11
 ug/l
 1
 U
 Yes

Sample 1D: JC23443-3

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/1/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

 Naphthalene
 0.11
 ug/l
 1
 U
 Yes

 1,4-Dioxane
 1.69
 ug/l
 1
 Yes

Sample ID: JC23443-4

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/5/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene 0.11 ug/l 1 - U Yes 1,4-Dioxane - - - - - - - -

Sample ID: JC23443-4

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/5/2016

.

Matrix: Groundwater

METHOD: 8270D (Scan)

1,4-Dioxane 33.3 ug/l 1 - Yes

Sample 1D: JC23443-5

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/5/2016

Matrix: Groundwater

METHOD: 8270D (SIM)

Naphthalene 0.11 ug/l 1 - U Yes 1,4-Dioxane - - - Yes

Sample ID: JC23443-5

Sample location: BMS-ICM, Humacao, PR

Sampling date: 7/5/2016

Matrix: Groundwater

METHOD: 8270D (Scan)

1,4-Dioxane 5.81 ug/l 1 - - Yes

	Project Number:_JC23443
	Date: June_30-July_05,_2016
	Shipping Date:July_05,_2016
	EPA Region: 2
REVIEW OF SEMIVOLATILE (DRGANIC PACKAGE
The following guidelines for evaluating volatile or validation actions. This document will assist the make more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous V 2015 –Revision 0. Semivolatile Data Validation. The Q on the data review worksheets are from the prima noted.	eviewer in using professional judgment to the needs of the data users. The sample a validation guidance documents in the Vaste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance da included:	
Lab. Project/SDG No.:JC23443	Sample matrix:Groundwater
Trip blank No.:	
Field blank No.:	
Equipment blank No.:	
Field duplicate No.:	
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
XGC/MS Tuning	X Calibrations
X Internal Standard PerformanceX Blanks	X Compound IdentificationsX Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_Naphthalene_and_1,4-Dioxane_ana_ _Samples_JC23443-4_and_JC23443-5_analyzed_for_1,	
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetext	
Reviewer: (a) all ayuus	
Date:July_24, 2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
	21-7200-12-24	
	1	
		9.3 9.32 9.322 3
	- 144,500-11-1500 - 1500	
<u> </u>		
	-	
		-

All criteria were met _X
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	pН	ACTION				
All samples extracted and analyzed within method recommended holding time. Samples properly preserved.								

Cool	er temper	ature (Criteria	: 4 <u>+</u> 2	°C):	5.2ºC	
------	-----------	-----------------	----------------	------	-------	--

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

		ing Time Actions for Senity		tion
Matrix	Preserved Criteria		Detected Associated Compounds	Non-Detected Associated Compounds
ļ	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professi	onal judgment
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
Aqueous	Yes	≤7 days (for extraction) ≤40 days (for analysis)	No qualification	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	UJ
	Yes/No	Grossly Exceeded	J	UJ or R
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use profession	onal judgment
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
Non-Aqueous	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qua	lification
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ
	Yes/No	Grossly Exceeded	3	UJ or R

			All criteria were metX Criteria were not met see below
GC/MS TUNING	3		
The assessmer tuning QC limits	nt of the tuning results is to determin	ne if the sample instrumenta	tion is within the standard
_X The DF	TPP performance results were revi	ewed and found to be within	the specified criteria.
_X DFTPP	tuning was performed for every 12	hours of sample analysis.	
If no, use profes or rejected.	ssional judgment to determine whet	her the associated data sho	uld be accepted, qualified
Notes:	These requirements do not apply Monitoring (SIM) technique.	y when samples are analy.	zed by the Selected Ion
Notes:	All mass spectrometer conditions analysis. Background subtraction unacceptable No data should be qualified based	on actions resulting in	
	The requirement to analyze the instanalysis of PAHs/pentachloropher	•	•
List	the	samples	affected:
-			·

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- State in the Data Review Narrative, decisions to use analytical data associated with DFTPP 3. instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX	
Criteria were not met	
and/or see below	

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_06/20/16_(SIM)
Instrument ID numbers:	GCMS3M
Matrix/Level:	Aqueous/low
Date of initial calibration:	06/20-21/16_(SIM)
	GCMS4M
	Aqueous/low
Date of initial calibration:	06/20/16_(Scan)
	GCMSP
	Aqueous/low
Date of initial calibration:	06/14-15/16_(Scan)
	GCMSZ
	_Aqueous/low
'	

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES			
	ID#		RFs, %RSD, %D, r		AFFECTED			
Initial and initial calibration verification meets the method and guidance validation document								
performa	performance criteria. Other instrument used for the analysis of QC samples for this job. The QC							
	samples analyzed were not validated							
		i						

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	± 50.0
Phenol	0.080	20.0	± 20.0	± 25.0
Bis(2-chloroethyl)ether	0.100	20.0	±20.0	±25.0
2-Chlorophenol	0.200	20.0	± 20.0	±25.0
2-Methylphenol	0.010	20.0	±20.0	±25.0
3-Methylphenol	0.010	20.0	±20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	± 25.0	±50.0
Acetophenone	0.060	20.0	± 20.0	±25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	± 25.0
Hexachloroethane	0.100	20.0	± 20.0	± 25.0
Nitrobenzene	0.090	20.0	±20.0	±25.0
Isophorone	0.100	20.0	±20.0	± 25.0
2-Nitrophenol	0.060	20.0	±20.0	± 25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	±20.0	± 25.0
2,4-Dichlorophenol	0.060	20.0	±20.0	± 25.0
Naphthalene	0.200	20.0	±20.0	±25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	±20.0	± 25.0
Caprolactam	0.010	40.0	±30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	±20.0	±25.0
2-Methylnaphthalene	0.100	20.0	±20.0	±25.0
Hexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	±20.0	±25.0
1,1'-Biphenyl	0.200	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	±25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	±20.0	±25.0
Acenaphthylene	0,400	20,0	±20.0	±25.0
3-Nitroaniline	0.010	20.0	±25.0	±50.0
Acenaphthene	0,200	20,0	±20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	±50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	±50.0
Dibenzofuran	0.300	20.0	±20.0	±25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	±25.0
Diethylphthalate	0.300	20.0	±20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	±20.0	±25.0
4-Chlorophenyl-phenylether	0.100	20.0	±20.0	±25.0
Fluorene	0.200	20.0	±20.0	±25.0
4-Nitroaniline	0.010	40.0	±40.0	±50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	±50.0
4-Bromophenyl-phenyl ether	0.070	20.0	±20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	± 20.0	± 25.0
Hexachlorobenzene	0.050	20.0	±20.0	± 25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	±40.0	±50.0
Phenanthrene	0.200	20.0	± 20.0	±25.0
Anthracene	0.200	20.0	±20.0	± 25.0
Carbazole	0.050	20.0	± 20.0	± 25.0
Di-n-butylphthalate	0.500	20.0	±20.0	±25.0
Fluoranthene	0.100	20.0	±20.0	±25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	±25.0	± 50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ^t
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	±20.0	±25.0
Chrysene	0.200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0,200	20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	± 30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	±20.0	± 25.0
Acenaphthylene	0.900	20.0	± 20.0	± 25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	±25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	±30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	±25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	±40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	±40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0
Phenol-d ₅	0.010	20.0	±25.0	±25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	±20.0	± 25.0
2-Chlorophenol-d ₄	0.200	20.0	± 20.0	± 25.0
4-Methylphenol-d ₈	0.010	20.0	± 20.0	±25.0
4-Chloroaniline-d ₄	0.010	40.0	±40.0	± 50.0
Nitrobenzene-d ₅	0.050	20.0	±20.0	±25.0
2-Nitrophenol-d4	0.050	20.0	±20.0	±25.0
2,4-Dichlorophenol-d ₃	0.060	20.0	± 20.0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	±20.0	± 25.0
Acenaphthylene-d ₈	0.400	20.0	± 20.0	±25.0
4-Nitrophenol-d ₄	0.010	40.0	±40.0	± 50.0
Fluorene-d _{iii}	0.100	20.0	±20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	±30.0	±50.0
Anthracene-d ₁₀	0.300	20.0	± 20.0	±25.0
Pyrene-d ₁₀	0.300	20.0	±25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	±50.0
2-Methylnaphthalene-d _{in} (SIM)	0.300	20.0	± 20.0	± 25.0

¹ If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met
Criteria were not met
and/or see belowX

06/20/16 (SIM)

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:

			Date of continuing cal	on verification (ICV):_ibration (C	.06/20-21/16 CCV):_07/08/16	
			Instrument ID number	s:	GCMS3M	
			Matrix/Level:		Aqueous/low	
			Date of initial calibration Date of continuing cal	on verification (ICV):_ ibration verification (0	6/20-21/16_(SIM) .06/21/16 CCV):_07/07/16;_07/09/1	6
			Instrument ID number		GCMS4M	
			Matrix/Level:	5	GCIVIS-HVI	
			Date of initial calibration Date of initial calibration Date of continuing cal	on:0 on verification (ICV):_ ibration verification (C	6/14-15/16_(Scan) 06/15-16/16 CCV):_07/10/16 GCMSZ	
			Matrix/Level:		Aqueous/low	
			Date of initial calibration Date of continuing cal Date of closing CCV:_Instrument ID number	on verification (ICV):_ ibration verification (C s:	6/28/16_(Scan) .06/28-29/16 .CCV):_07/08/16 GCMSP Aqueous/low	
)ATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED	

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria. No closing calibration verification included in data package. No action taken, professional judgment.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV -	Action		
Citteria for Opening CCV	Criteria for Closing CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	נט	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	•		anks	
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_analyzed_wi	th_this_data_package	
		25.00		

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
	≥CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
Method, TCLP/SPLP LEB, Field		≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

Outt.	Action		
Criteria	Detect	Non-detect	
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R	
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-	UJ	
Lower Acceptance limit ≤%R ≤ Upper Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:__Groundwater______

SAMPLE ID SURROGATE COMPOUND ACTION

_DMCs_meet_the_required_criteria._Non-deuterated_surrogates_added_to_the_samples_were__
_within_laboratory_recovery_limits.______

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-da (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
	Phenol	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-dg (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenoi	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d5(DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d4(DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (FAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC23251-2_(SIM)	Matrix/Level:Groundwater
Sample ID:JC23294-1_(SIM)	Matrix/Level:Groundwater

Note: MS/MSD % recoveries and RPD within laboratory control limits.

No MS/MSD data included in the data package for the scanning mode sample batch. No action taken, professional judgment.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _X
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action		
Cniena	Detect Non-detect J+ R J+ UJ No qualification No qualification int J- No qualification R	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ	
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	e Retention Times (RRTs) of reported compoung Continuing Calibration Verification (CCV)	
List compound	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
		
spectrum fror calibration)] rr a. b.	of the sample compound and a current labor the associated calibration standard (opening nust match according to the following criteria: All ions present in the standard mass spectrumust be present in the sample spectrum. The relative intensities of these ions must agr sample spectra (e.g., for an ion with an abuit the corresponding sample ion abundance must lons present at greater than 10% in the sam standard spectrum, must be evaluated by interpretation.	g CCV or mid-point standard from initial um at a relative intensity greater than 10% ree within ±20% between the standard and indance of 50% in the standard spectrum, st be between 30-70%). The ple mass spectrum, but not present in the
List compound	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
_ldentified_co	mpounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

	700	_
.ist		Cs
151		1 . ~

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All c	rite	na v	rere	mel	_X_	_
Crit	eria	wer	е по	t me	et	
and	or s	ee l	belo	w		

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action		
Criteria	Detects	Non-detects		
%Solids < 10.0%	Use professional judgment	Use professional judgment		
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment		
%Solids > 30.0%	No qualification	No qualification		

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
.32	4	
	1	
	es. (1)	
2.70		
	-0	
100	W.	
4		V .
Control of the Contro		

				Crite	riteria were metX_ tria were not met or see below	-
FIELD DUPLICATE	PRECIS	SION				
Sample IDs	: _	-		Ма	trix:	
analyses measure laboratory duplicate will have a greater field duplicate samp The project QAPP s Suggested criteria:	both fiel s which variance les. hould be if large	d and lab precionly laboratory than water mater reviewed for precious (2.50 %)	and analyzed as an ission; therefore, the reperformance. It is also attrices due to difficultion of the second of	esults may so expected es associate tion. identification	have more vari I that soil dupliced ed with collection of the sample	ability than cate results ng identical
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
•	•		part of this data pack required criteria < 50	_	-	

			Criteria were not met and/or see below
OTHE	ER ISSUES		
A.	System Perf	ormance	
List sa	amples qualifie	d based on the degradation of system	performance during simple analysis:
Samp		Comments	Actions
Action	1:		
during	g sample analy		nined that system performance has degraded y Program COR any action as a result of cted the data.
B.	Overall Asse	ssment of Data	
List sa	amples qualifie	d based on other issues:	
Samp	le ID	Comments	Actions
_No_0	other_issues_th	nat_required_the_need_to_qualify_the	_dataResults_are_valid_and_can_be_used n_below
Note:		and JC23443-2: There are compounds med by re-extraction outside the holding	s in BS were outside in house QC limits. The

All criteria were met _X__

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results